Technical note, 2018-05-22: Why Azurlight Systems lasers are a perfect fit for atomic physics experiments? 


The lasers used in these experiments must have excellent performance in terms of noise and stability. Stable optical lattices and low temperature optical traps are strongly dependent on laser noise, power stability, mode stability and beam pointing stability. Compromise on one or all of these parameters can lead to unwanted atom heating and loss of or reduction in lattice contrast. Azurlight Systems offers industry leading performan- ce across all of these parameters making the lasers best in class for a wide range of low temperature physics systems.


 Optics Letters Vol. 41,Issue 24: Coherently combined master oscillator fiber power amplifiers for Advanced Virgo


Stable low-noise high-power lasers are indispensable in advancing the strain sensitivity of interferometric gravitational wave detectors. Advanced LIGO and Advanced Virgo are currently under commissioning and require about 200 W of single-frequency laser power, while the future detector design may require up to the order of 500 W. In this Letter, we present the design and, to the best of our knowledge, the first experimental demonstration of the laser system for Advanced Virgo that is based on coherently combined fiber laser amplifiers. We show the long-term performance of two 40 W fiber laser amplifiers, as well as their characterization in terms of beam quality, power noise, phase noise, and beam pointing. Moreover, a simple and compact setup utilizing fibered modulators and actuators for the coherent beam combination of these two fiber laser amplifiers is reported. A combination efficiency of about 96% was achieved, and no spurious noise was observed.


SOF 2016: Ultra-low noise high power CW MOPA Ytterbium doped fiber lasers 


We report on a high power continuous wave MOPA fiber laser with an ultra-low intensity noise. This system, based on ytterbium doped fiber, can emit up to 50W at 1064 nm. We also show a new simple noise eater for intensity noise reduction..


Univ. Sophia Antipolis:  High-power laser system for Advanced Virgo gravitational wave detector : coherently combined master oscillator

Résumé :

Virgo est un interféromètre de Michelson dont les bras contiennent des cavités Fabry-Perot. Il a été construit pour détecter directement les ondes gravitationnelles. Le projet Advanced Virgo est une amélioration majeure de Virgo pour atteindre une sensibilité encore plus élevée avec laquelle la détection des ondes gravitationnelles deviendra probable. On prévoit un système laser mono-fréquence de 175 Watts de puissance optique présentant des stabilités accrues pour le bruit relatif de puissance et pour le bruit de fréquence. Ce travail de thèse a pour objet la réalisation de ce système laser de haute-puissance et de haute-stabilité basée sur l'utilisation d'amplificateurs à fibre combinés de façon cohérente. Des amplificateurs à fibre disponibles dans le commerce sont caractérisés en termes de qualité de faisceau, de bruit de puissance, de bruit de fréquence, de stabilité de pointé du faisceau, et également en terme de stabilité à long terme sur quelques milliers d'heures. On implémente l'interférométrie de Mach-Zehnder pour la combinaison cohérente de faisceaux. Les techniques de caractérisation de faisceaux laser sont aussi développées en considérant leurs limites ultimes. Hormis un déficit de puissance optique, le système laser développé dans cette étude sur la base de la combinaison cohérente de Master Oscillator Fiber Power Amplifiers, remplit les conditions posées par Advanced Virgo.


OSA Publishing: High-power and low-intensity noise laser at 1064  nm 

Abstract   50  kHz

We have developed a single-frequency, narrow-linewidth <50kHz laser operating at 1064 nm with a high output power (50 W). The laser is based on an ytterbium-doped fiber master oscillator power amplifier architecture with an output beam at the diffraction limit. An output power of 50 W is obtained with two amplification stages using a 50 mW diode laser seeder. We have carefully studied the relative intensity noise at each amplification stage. The detrimental effect due to stimulated Brillouin scattering on residual amplitude noise has been observed on the high-power booster stage. After careful optimization, this laser exhibits low intensity noise with a RMS value equal to 0.012% (1 kHz/10 MHz) at 50 W.


SPIE: SPIE is an international society advancing an interdisciplinary approach to the science and application of light.

OSA : Founded in 1916, The Optical Society (OSA) is the leading professional association in optics and photonics, home to accomplished science, engineering, and business leaders from all over the world. Through world-renowned publications, meetings, and membership programs, OSA provides quality information and inspiring interactions that power achievements in the science of light.

LIA: The Laser Institute of America (LIA) is the professional society for laser applications and safety. Our mission is to foster lasers, laser applications, and laser safety worldwide. Serving the industrial, medical, research and government communities for over 45 years, LIA offers technical information, training and networking opportunities to laser users from around the globe.

Laser Focus World: Advances in Optoelectronics & Laser Technology

Published since 1965, Laser Focus World – a monthly magazine for engineers, researchers, scientists, and technical professionals – provides comprehensive global coverage of optoelectronic technologies, applications, and markets. Nearly 70,000 qualified optoelectronics professionals from around the world currently subscribe.

Photonics Spectra: reports on what’s timely and of interest to the photonics community: news, technology advances, research, company changes and profiles, new products, feature articles and major industry events. The site also features the online editions (and archives) of the award-winning Photonics Spectra magazine, BioPhotonics magazine, Industrial Photonics magazine and EuroPhotonics; online versions of the Photonics Buyers’ Guide, the Photonics Handbook and Photonics Dictionary; video, webinars, white papers, a community forum, and tradeshow coverage including a calendar of courses and events.